
KaT Operating System

Tomislav Kućar and Karlo Kegljević
Algebra/Primjenjeno računarstvo, Zagreb, Hrvatska

kucar.tomislav@gmail.com, kegljevickarlo@gmail.com

Abstract - The KaT project aims to design and
implement an operating system in modern C++. In this
document we give basic overview on things that make
modern operating systems kernel.

Keywords – booting, device drivers, memory
management, processes, system calls, file system

I. INTRODUCTION

An operating system (OS) is system software that
manages computer hardware and software resources and
provides common services for computer programs.
Operating system consists of many small but complex
parts, we outlay their basic definitions/and or
implementations in this document.

Developing OS is complex task that requires very
specific development environment and set of tools.
Theoretically one could write an OS in any language he
wants, however assembly, C and C++ are de facto
languages for this kind of job.

Our compiler suite of choice is GCC, build system
cmake, and scripting language Bash. Everything is build
and assembled inside virtual machine built by vagrant.
Vagrant enables us to automate complete complex process
of building cross compiler, OS, linking and producing iso
(even building documentation) into a single vagrant
up command.

II. OPERATING SYSTEM BASICS

The job of an operating system is to share a computer
among multiple programs and to provide a more useful set
of services than the hardware alone supports. The
operating system manages and abstracts the low-level
hardware, so that, for example, a word processor need not
concern itself with which type of disk hardware is being
used. It also shares the hardware among multiple
programs so that they run (or appear to run) at the same
time. Finally, operating systems provide controlled ways
for programs to interact, so that they can share data or
work together.

x86 is a family of backward-compatible instruction set
architectures based on the Intel 8086 CPU and its Intel
8088 variant. The 8086 was introduced in 1978 as a fully
16-bit extension of Intel’s 8-bit-based 8080
microprocessor, with memory segmentation as a solution
for addressing more memory than can be covered by a
plain 16-bit address. The term “x86” came into being

because the names of several successors to Intel’s 8086
processor end in “86”, including the 80186, 80286, 80386
and 80486 processors. [1]

A. Booting

When you turn on a computer, it loads the BIOS from
some special flash memory. The BIOS runs self test and
initialization routines of the hardware, then it looks for
bootable devices. If it finds one, the control is transferred
to its bootloader, which is a small portion of executable
code stored at the device’s beginning. The bootloader has
to determine the location of the kernel image on the
device and load it into memory. It also needs to switch the
CPU to the so-called protected mode because x86 CPUs
start in the very limited real mode by default (to be
backwards compatible).

We won’t write a bootloader because that would be a
complex project on its own. Fortunately there is a
bootloader standard: the Multiboot Specification. Our
kernel just needs to indicate that it supports Multiboot and
every Multiboot-compliant bootloader can boot it. We will
use the Multiboot 2 specification together with the well-
known GRUB 2 bootloader.

To indicate our Multiboot 2 support to the bootloader,
our kernel must start with a Multiboot Header, which has
the following format:

Field Type Value

1. Magic number u32 0xE85250D6

2. Architecture u32 0

3. Header length u32 header size + tags

Checksum u32 - (1 + 2 + 3)

end tag (u16, u16, u32) (0, 0, 8)

Boot process

To make our kernel multiboot compliant we define the
constants and header in assembly:

multiboot header constants
.set ALIGN,1<<0 #align loaded modules
.set MEMINFO, 1<<1 #provide memory map
.set FLAGS,ALIGN | MEMINFO # Multiboot 'flag'
.set MAGIC,0x1BADB002 # 'magic number'
.set CHECKSUM, -(MAGIC + FLAGS) # checksum

Declare a header as in the Multiboot Standard.
.section .multiboot
.align 4
.long MAGIC
.long FLAGS
.long CHECKSUM

We put header into special section so we can force it to
be in the start of the final program. The bootloader will
search for this magic sequence and recognize us as a
multiboot kernel.

Grub moves kernel into protected mode that allows
system software to use features such as virtual memory,
paging and safe multi-tasking designed to increase an
operating system’s control over application software.

B. Device drivers

A device driver is a specific type of computer software
developed to allow interaction with hardware devices.
Typically this constitutes an interface for communicating
with the device, through the specific computer bus or
communications subsystem that the hardware is connected
to, providing commands to and/or receiving data from the
device, and on the other end, the requisite interfaces to the
operating system and software applications. It is a
specialized hardware-dependent computer program which
is also operating system specific that enables another
program, typically an operating system or applications
software package or computer program running under the
operating system kernel, to interact transparently with a
hardware device, and usually provides the requisite
interrupt handling necessary for any necessary
asynchronous time-dependent hardware interfacing needs.

a) The screen
Our kernel gets booted by GRUB in text mode. That

is, it has available to it a framebuffer (area of memory)
that controls a screen of characters (not pixels) 80 wide by

25 high. The area of memory known as the framebuffer is
accessible just like normal RAM, at address 0xB8000. It is
important to note, however, that it is not actually normal
RAM. It is part of the VGA controller’s dedicated video
memory that has been memory-mapped via hardware into
our linear address space. The framebuffer is just an array
of 16-bit words, each 16-bit value representing the display
of one character. Highest 8 bits are ASCII value of the
character, bits 7-4 represent the background and bits 3-0
foreground color.

Bit: |15 14 13 12 11 10 9 8|7 6 5 4|3 2 1 0|
Content: | ASCII | FG | BG |

The offset from the start of the framebuffer of the
word that specifies a character at position x, y is simply (y
* 80 + x) * 2. Say we want to write ‘A’(65,or 0x41) with
green foreground and dark grey background(8) at place
(0,0) we would write assembly code mov [0x000B8000],
0x4128 where 0x41 represents ASCII A, 2 is green and 8
is dark grey color. Second cell (0,1) would be
0x000B8000 + 16 = 0x000B8010.

The VGA controller also has some ports on the main
I/O bus, which we can use to send it specific instructions.
(Among others) it has a control register at 0x3D4 and a
data register at 0x3D5. We will use these to instruct the
controller to update it’s cursor position.

b) GDT
The Global Descriptor Table (GDT) is a data structure

used by Intel x86-family processors starting with the
80286 in order to define the characteristics of the various
memory areas used during program execution, including
the base address, the size, and access privileges like
executability and writability. These memory areas are
called segments in Intel terminology.

The GDT can hold things other than segment
descriptors as well. Every 8-byte entry in the GDT is a
descriptor, but these can also be Task State Segment (TSS)
descriptors, Local Descriptor Table (LDT) descriptors, or
Call Gate descriptors.

The x86 architecture has two methods of memory
protection and of providing virtual memory -
segmentation and paging.

With segmentation, every memory access is evaluated
with respect to a segment. That is, the memory address is
added to the segment’s base address, and checked against
the segment’s length. With paging, the address space is
split into (usually 4KB, but this can change) blocks, called
pages. Each page can be mapped into physical memory -
mapped onto what is called a ‘frame’. Or, it can be
unmapped. This way one can create virtual memory
spaces.

Both of these methods have their advantages, but
paging is much better. Segmentation is, although still
usable, fast becoming obsolete as a method of memory
protection and virtual memory. In fact, the x86-64
architecture requires a flat memory model (one segment
with a base of 0 and a limit of 0xFFFFFFFF) for some of
it’s instructions to operate properly.

GRUB boot loader

Segmentation is, however, completely in-built into the
x86 architecture. Every memory access which a program
can perform always goes through a segment. It’s
impossible to get around it, therefore we need to setup
Global Descriptor Table - a list of segment descriptors.

While GRUB does setup GDT for us we don’t know
where it is nor what is in it. In the x86, there are 6
segmentation registers. Each holds an offset into the GDT.
They are cs (code segment), ds (data segment), es (extra
segment), fs, gs, ss (stack segment). The code segment
must reference a descriptor which is set as a ‘code
segment’. There is a flag for this in the access byte. The
rest should all reference a descriptor which is set as a ‘data
segment’.

To set up GDT we need to create GDT entry structure
and a special pointer structure which we give to the
processor so it can find the GDT.

c) Interrupts
In system programming, an interrupt is a signal to the

processor emitted by hardware or software indicating an
event that needs immediate attention. An interrupt alerts
the processor to a high-priority condition requiring the
interruption of the current code the processor is executing.
The processor responds by suspending its current
activities, saving its state, and executing a function called
an interrupt handler (or an interrupt service routine, ISR)
to deal with the event. This interruption is temporary, and,
after the interrupt handler finishes, the processor resumes
normal activities.

There are 3 types of interrupts:

• Hardware interrupts: are sent to
the processor from an external
device (keyboard, mouse, hard
disk, ...). Hardware interrupts were
introduced as a way to reduce
wasting the processor’s valuable
time in polling loops, waiting for
external events.

• Software interrupts: are initiated
voluntarily by the software. It’s
used to manage system calls.

• Exceptions: are used for errors or
events occurring during program
execution that are exceptional
enough that they cannot be
handled within the program itself
(division by zero, page fault, ...)

The PIC (Programmable interrupt controller)is a
device that is used to combine several sources of interrupt
onto one or more CPU lines, while allowing priority levels
to be assigned to its interrupt outputs. When the device
has multiple interrupt outputs to assert, it asserts them in
the order of their relative priority.

The Interrupt Descriptor Table tells the processor
where to find handlers for each interrupt. It is very similar
to the GDT. It is just an array of entries, each one
corresponding to an interrupt number. There are 256

possible interrupt numbers, so 256 must be defined. If an
interrupt occurs and there is no entry for it (even a NULL
entry is fine), the processor will panic and reset. The
processor will sometimes needs to signal the kernel.
Something major may have happened, such as a divide-
by-zero, or a page fault. To do this, it uses the first 32
interrupts. It is therefore doubly important that all of these
are mapped and non-NULL - else the CPU will triple-fault
and reset.

Like the GDT, the IDT is loaded using the LIDTL
assembly instruction. It expects the location of a IDT
description structure (pointer).

We define our IDT table and then load it using LIDTL.
The IDT table can be stored wherever we want in
memory, its address should just be signaled to the process
using the IDTR registry. After intialization of our IDT, we
can activate interrupts by configuring the PIC.

d) PS/2 Keyboard
The PS/2 Keyboard is a device that talks to a PS/2

controller using serial communication. Ideally, each
different type of PS/2 controller driver should provide
some sort of standard/simple “send byte/receive byte”
interface, and the PS/2 Keyboard driver would use this
interface without caring about lower level details (like
what type of PS/2 controller the device is plugged into).

The PS/2 Keyboard accepts commands and sends
responses to those commands, and also sends scan codes
indicating when a key was pressed or released. A
command is one byte. Some commands have data byte/s
which must be sent after the command byte. The keyboard
typically responds to a command by sending either an
“ACK” (to acknowledge the command) or a “Resend” (to
say something was wrong with the previous command)
back.

C. Memory management

Virtual memory is an abstraction of physical memory.
The purpose of virtual memory is generally to simplify
application development and to let processes address more
memory than what is actually physically present in the
machine. We also don’t want applications messing with
the kernel or other applications’ memory due to security.

In the x86 architecture, virtual memory can be
accomplished in two ways: segmentation and paging.
Paging is by far the most common and versatile technique,
and we’ll implement it the next chapter. Some use of
segmentation is still necessary to allow for code to execute
under different privilege levels.

a) Segmentation
Segmentation in x86 means accessing the memory
through segments. Segments are portions of the address
space, possibly overlapping, specified by a base address
and a limit. To address a byte in segmented memory you
use a 48-bit logical address: 16 bits that specifies the
segment and 32-bits that specifies what offset within that
segment you want. The offset is added to the base address
of the segment, and the resulting linear address is checked
against the segment’s limit. If everything works out fine

the result is a linear address. When paging is disabled,
then the linear address space is mapped 1:1 onto the
physical address space, and the physical memory can be
accessed. We enable segmentation via GDT.

b) Paging
Segmentation translates a logical address into a linear

address. Paging translates these linear addresses onto the
physical address space, and determines access rights and
how the memory should be cached.

Paging in x86 consists of a page directory (PDT) that
can contain references to 1024 page tables (PT), each of
which can point to 1024 sections of physical memory
called page frames (PF). Each page frame is 4096 byte
large. In a virtual (linear) address, the highest 10 bits
specifies the offset of a page directory entry (PDE) in the
current PDT, the next 10 bits the offset of a page table
entry (PTE) within the page table pointed to by that PDE.
The lowest 12 bits in the address is the offset within the
page frame to be addressed.

All page directories, page tables and page frames need
to be aligned on 4096 byte addresses. This makes it
possible to address a PDT, PT or PF with just the highest
20 bits of a 32 bit address, since the lowest 12 need to be
zero.

The PDE and PTE structure is very similar to each
other: 32 bits (4 bytes), where the highest 20 bits points to
a PTE or PF, and the lowest 12 bits control access rights
and other configurations. 4 bytes times 1024 equals 4096
bytes, so a page directory and page table both fit in a page
frame themselves.

The simplest kind of paging is when we map each
virtual address onto the same physical address, called
identity paging. This can be done at compile time by
creating a page directory where each entry points to its
corresponding 4 MB frame.

c) Page Frame Allocation
Role of page frame allocator is simply to tell the OS
which parts of memory are free to use. We need to know
how much memory is available on the computer the OS is
running on. We can read it from the multiboot structure
passed to us by GRUB. GRUB collects the information
we need about the memory - what is reserved, I/O
mapped, read-only etc.

D. Processes

Creating new processes is usually done with two
different system calls: fork and exec. fork creates an exact
copy of the currently running process, while exec replaces
the current process with one that is specified by a path to
the location of a program in the file system.

1) System calls
System calls is the way user-mode applications

interact with the kernel - to ask for resources, request
operations to be performed, etc.

System calls are traditionally invoked with software
interrupts. The user applications put the appropriate values

in registers or on the stack and then initiates a pre-defined
interrupt which transfers execution to the kernel.

When system calls are executed, the current privilege
level is typically changed from PL3 to PL0 (if the
application is running in user mode). To allow this, the
DPL of the entry in the IDT for the system call interrupt
needs to allow PL3 access.

To enable system calls we need to setup a TSS before
entering user mode.

E. File system

The purpose of file system is to organize and store
data. File system typically supports sharing data among
users and applications, as well as persistence so data is
still available after reboot.

The communication between computer and optical
drive can be done by various types of controllers and
cabling such as ATAPI, SATA, or USB. Many operating
systems offer some kind of generic SCSI driver interface
which abstracts the various transports to a single
transaction API. These APIs are also available in
userspace.

KaT OS implements ISO 9660 file system and
ATA/ATAPI drivers.

a) PCI IDE Controller
IDE is a keyword which refers to the electrical

specification of the cables which connect ATA drives (like
hard drives) to another device. The drives use the ATA
(Advanced Technology Attachment) interface. An IDE
cable also can terminate at an IDE card connected to PCI.

Parallel ATA (PATA), originally AT Attachment, is an
interface standard for the connection of storage devices
such as hard disk drives, floppy disk drives, and optical
disc drives in computers. It uses the underlying AT
Attachment (ATA) and AT Attachment Packet Interface
(ATAPI) standards.

ATAPI is an extension to ATA (recently renamed to
PATA) and Serial ATA, which adds support for the SCSI
command set. With ATAPI a greater variety of devices can
be connected to a computer than with ATA alone.

ATAPI devices are also “speaking ATA” because the
ATA physical interface and protocol are still being used to
send the packets. On the other hand, ATA hard drives and
solid state drives do not use ATAPI. ATAPI is basically a
way to issue SCSI commands to a CD-ROM, CD-RW,
DVD, or tape drive, attached to the ATA bus.

KaT OS running some kernel built-in commands

ATAPI uses a very small number of ATA commands.
The most important are the PACKET command (0xA0),
and IDENTIFY PACKET DEVICE (0xA1).

An IDE driver does not need to know whether a drive
is parallel or serial, it only has to know whether it’s using
ATA or ATAPI. IDE can connect up to 4 drives. Each
drive can be one of the following:

• ATA (Serial): Used for most
modern hard drives.

• ATA (Parallel): Commonly used
for hard drives.

• ATAPI (Serial): Used for most
modern optical drives.

• ATAPI (Parallel): Commonly used
for optical drives.

b) ISO 9660
ISO 9660 is the standard file system for CD-ROMs. It

is also widely used on DVD and BD media and may as
well be present on USB sticks or hard disks. Its
specifications are available for free under the name
ECMA-119.

An ISO 9660 sector is normally 2 KiB long. Although
the specification allows for alternative sector sizes, you
will rarely find anything other than 2 KiB. ISO 9660 file
systems can have up to 2 exp 32 blocks, i.e. 8 TiB.

The following is the rough overall structure of the ISO
9660 file system:

ISO 9660 File System

System Area Unused by ISO 9660

Data Area Volume Descriptor Set
Path tables, Directories and Files

 The ISO 9660 standard specifies three ways to encode
16 and 32-bit integers, using either little-endian (least-
significant byte first), big-endian (most-significant byte
first), or a combination of both (little-endian followed by
big-endian). Both-endian (LSB-MSB) fields are therefore
twice as wide. For this reason, 32-bit LBA’s often appear
as 8 byte fields. Where a both-endian format is present,
the x86 architecture makes use of the first little-endian
sequence and ignores the big-endian sequence.

c) The virtual file system
A VFS is intended to abstract away details of the file

system and location that files are stored, and to give
access to them in a uniform manner. They are usually
implemented as a graph of nodes; Each node representing
either a file, directory, symbolic link, device, socket or
pipe. Each node should know what file system it belongs
to and have enough information such that the relevant
open/close/etc functions in its driver can be found and
executed. A common way to accomplish this is to have the

node store function pointers which can be called by the
kernel. We need a few function pointers:

• Open - Called when a node is
opened as a file descriptor.

• Close - Called when the node is
closed.

• Read & Write
• Readdir
• Finddir

Mountpoints are the UNIX way of accessing different
file systems. A filesystem is mounted on a directory - any
subsequent access to that directory will actually access the
root directory of the new filesystem. So essentially the
directory is told that it is a mountpoint and given a pointer
to the root node of the new filesystem.

III. CONCLUSION

From the start we were aware how complex
developing operating system is, however in reality it
proved to be even harder than thought. Individual parts
may appear simple enough to grasp in few days or even
hours, however their implementation and cooperation is
very complex. There are also many caveats as result of
different manufacturers maintaining backwards
compatibility.

REFERENCES

Books:

[1] Operating System Concepts 10th ed., A. Silberschatz, G. Gagne,
P.B. Galvin

[2] Operating systems design and implementation 3rd ed, A.
Tanenbaum

[3] I. S. Jacobs and C. P. Bean, “Fine particles, thin films and
exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H.
Suhl, Eds. New York: Academic, 1963, pp. 271–350.

[4] The Design of the UNIX Operating System, M.J. Bach

[5] The Design and Implementation of the FreeBSD Operating
System

[6] Intel® 64 and IA-32 Architectures Software Developer’s Manual

[7] Writing a Simple Operating System, N. Blundell

[8] Operating systems: from 0 to 1, T.D. Hoang

devfs mounted on /dev

[9] The little book about OS development, E. Helin, A. Renberg

[10] xv6 book 10th ed, R. Cox, F. Kaashoek, R. Morris

Internet pages:

[1] https://en.wikipedia.org/wiki/X86

[2] https://www.gnu.org/software/grub/manual/grub/html_node/index.
html

[3] https://linux.die.net/man/1/qemu-img

[4] https://wiki.osdev.org/C%2B%2B

[5] https://wiki.osdev.org/Boot_Sequence

[6] https://manybutfinite.com/post/how-computers-boot-up

[7] https://wiki.osdev.org/GCC_Cross-Compiler

[8] https://en.wikipedia.org/wiki/Booting#BOOT-LOADER

[9] https://en.wikipedia.org/wiki/GNU_GRUB

[10] http://www.brokenthorn.com

[11] https://en.wikipedia.org/wiki/Interrupt

[12] https://en.wikipedia.org/wiki/File_system

[13] https://en.wikipedia.org/wiki/Parallel_ATA

[14] https://wiki.osdev.org/ATAPI

[15] https://wiki.osdev.org/PCI_IDE_Controller

https://en.wikipedia.org/wiki/X86
https://wiki.osdev.org/PCI_IDE_Controller
https://wiki.osdev.org/ATAPI
https://en.wikipedia.org/wiki/Parallel_ATA
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Interrupt
http://www.brokenthorn.com/
https://en.wikipedia.org/wiki/GNU_GRUB
https://en.wikipedia.org/wiki/Booting#BOOT-LOADER
https://wiki.osdev.org/GCC_Cross-Compiler
https://manybutfinite.com/post/how-computers-boot-up
https://wiki.osdev.org/Boot_Sequence
https://wiki.osdev.org/C%2B%2B
https://linux.die.net/man/1/qemu-img
https://www.gnu.org/software/grub/manual/grub/html_node/index.html
https://www.gnu.org/software/grub/manual/grub/html_node/index.html

	I. Introduction
	II. Operating system basics
	A. Booting
	B. Device drivers
	a) The screen
	b) GDT
	c) Interrupts
	d) PS/2 Keyboard

	C. Memory management
	a) Segmentation
	b) Paging
	c) Page Frame Allocation

	D. Processes
	1) System calls

	E. File system
	a) PCI IDE Controller
	b) ISO 9660
	c) The virtual file system

	III. Conclusion
	References

