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Abstract -  The  KaT  project  aims  to  design  and
implement  an  operating  system  in  modern  C++.  In  this
document  we  give  basic  overview  on  things  that  make
modern operating systems kernel.
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I. INTRODUCTION

An  operating  system  (OS)  is  system  software  that
manages computer hardware and software resources and
provides  common  services  for  computer  programs.
Operating  system  consists  of  many  small  but  complex
parts,  we  outlay  their  basic  definitions/and  or
implementations in this document.

Developing  OS  is  complex  task  that  requires  very
specific  development  environment  and  set  of  tools.
Theoretically one could write an OS in any language he
wants,  however  assembly,  C  and  C++  are  de  facto
languages for this kind of job.

Our  compiler  suite  of  choice  is  GCC, build system
cmake, and scripting language Bash. Everything is build
and  assembled  inside  virtual  machine  built  by  vagrant.
Vagrant enables us to automate complete complex process
of building cross compiler, OS, linking and producing iso
(even  building  documentation)  into  a  single  vagrant
up command.

II. OPERATING SYSTEM BASICS

The job of an operating system is to share a computer
among multiple programs and to provide a more useful set
of  services  than  the  hardware  alone  supports.  The
operating  system  manages  and  abstracts  the  low-level
hardware, so that, for example, a word processor need not
concern itself with which type of disk hardware is being
used.  It  also  shares  the  hardware  among  multiple
programs so that they run (or appear to run) at the same
time. Finally, operating systems provide controlled ways
for programs to interact,  so that  they can share data or
work together.

x86 is a family of backward-compatible instruction set
architectures  based on the Intel  8086 CPU and its  Intel
8088 variant. The 8086 was introduced in 1978 as a fully
16-bit  extension  of  Intel’s  8-bit-based  8080
microprocessor, with memory segmentation as a solution
for addressing more memory than can be covered  by a
plain  16-bit  address.  The  term  “x86”  came  into  being

because the names of several  successors to Intel’s 8086
processor end in “86”, including the 80186, 80286, 80386
and 80486 processors. [1]

A. Booting

When you turn on a computer, it loads the BIOS from
some special flash memory. The BIOS runs self test and
initialization routines  of  the hardware,  then it  looks for
bootable devices. If it finds one, the control is transferred
to its bootloader, which is a small portion of executable
code stored at the device’s beginning. The bootloader has
to  determine  the  location  of  the  kernel  image  on  the
device and load it into memory. It also needs to switch the
CPU to the so-called protected mode because x86 CPUs
start  in  the  very  limited  real  mode  by  default  (to  be
backwards compatible).

We won’t write a bootloader because that would be a
complex  project  on  its  own.  Fortunately  there  is  a
bootloader  standard:  the  Multiboot  Specification.  Our
kernel just needs to indicate that it supports Multiboot and
every Multiboot-compliant bootloader can boot it. We will
use the Multiboot 2 specification together with the well-
known GRUB 2 bootloader.

To indicate our Multiboot 2 support to the bootloader,
our kernel must start with a Multiboot Header, which has
the following format:

Field Type Value

1. Magic number u32 0xE85250D6

2. Architecture u32 0

3. Header length u32 header size + tags

Checksum u32 - (1 + 2 + 3)

end tag (u16, u16, u32) (0, 0, 8)
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To make our kernel multiboot compliant we define the
constants and header in assembly:

# multiboot header constants
.set ALIGN,1<<0    #align loaded modules 
.set MEMINFO, 1<<1 #provide memory map
.set FLAGS,ALIGN | MEMINFO  # Multiboot 'flag'
.set MAGIC,0x1BADB002       # 'magic number' 
.set CHECKSUM, -(MAGIC + FLAGS) # checksum 

# Declare a header as in the Multiboot Standard.
.section .multiboot
.align 4
.long MAGIC
.long FLAGS
.long CHECKSUM

We put header into special section so we can force it to
be in the start of the final program. The bootloader will
search  for  this  magic  sequence  and  recognize  us  as  a
multiboot kernel.

Grub moves kernel  into protected  mode that  allows
system software to use features such as virtual memory,
paging  and  safe  multi-tasking  designed  to  increase  an
operating system’s control over application software.

B. Device drivers

A device driver is a specific type of computer software
developed  to  allow  interaction  with  hardware  devices.
Typically this constitutes an interface for communicating
with  the  device,  through  the  specific  computer  bus  or
communications subsystem that the hardware is connected
to, providing commands to and/or receiving data from the
device, and on the other end, the requisite interfaces to the
operating  system  and  software  applications.  It  is  a
specialized hardware-dependent computer program which
is  also  operating  system  specific  that  enables  another
program,  typically  an  operating  system  or  applications
software package or computer program running under the
operating system kernel,  to interact  transparently with a
hardware  device,  and  usually  provides  the  requisite
interrupt  handling  necessary  for  any  necessary
asynchronous time-dependent hardware interfacing needs.

a) The screen
Our kernel gets booted by GRUB in text mode. That

is, it has available to it a framebuffer (area of memory)
that controls a screen of characters (not pixels) 80 wide by

25 high. The area of memory known as the framebuffer is
accessible just like normal RAM, at address 0xB8000. It is
important to note, however, that it is not actually normal
RAM. It is part of the VGA controller’s dedicated video
memory that has been memory-mapped via hardware into
our linear address space. The framebuffer is just an array
of 16-bit words, each 16-bit value representing the display
of one character. Highest  8 bits  are ASCII value of the
character, bits 7-4 represent the background and bits 3-0
foreground color.

Bit:     |15 14 13 12 11 10 9 8|7 6 5 4|3 2 1 0|
Content: | ASCII               | FG    | BG    |

The  offset  from the  start  of  the  framebuffer  of  the
word that specifies a character at position x, y is simply (y
* 80 + x) * 2. Say we want to write ‘A’(65,or 0x41) with
green foreground and dark grey background(8)  at  place
(0,0) we would write assembly code mov [0x000B8000],
0x4128 where 0x41 represents ASCII A, 2 is green and 8
is  dark  grey  color.  Second  cell  (0,1)  would  be
0x000B8000 + 16 = 0x000B8010.

The VGA controller also has some ports on the main
I/O bus, which we can use to send it specific instructions.
(Among others) it has a control register at 0x3D4 and a
data register at 0x3D5. We will use these to instruct the
controller to update it’s cursor position.

b) GDT
The Global Descriptor Table (GDT) is a data structure

used  by  Intel  x86-family  processors  starting  with  the
80286 in order to define the characteristics of the various
memory areas used during program execution, including
the  base  address,  the  size,  and  access  privileges  like
executability  and  writability.  These  memory  areas  are
called segments in Intel terminology.

The  GDT  can  hold  things  other  than  segment
descriptors as well. Every 8-byte entry in the GDT is a
descriptor, but these can also be Task State Segment (TSS)
descriptors, Local Descriptor Table (LDT) descriptors, or
Call Gate descriptors.

The  x86  architecture  has  two  methods  of  memory
protection  and  of  providing  virtual  memory  -
segmentation and paging.

With segmentation, every memory access is evaluated
with respect to a segment. That is, the memory address is
added to the segment’s base address, and checked against
the segment’s length.  With paging, the address  space is
split into (usually 4KB, but this can change) blocks, called
pages. Each page can be mapped into physical memory -
mapped  onto  what  is  called  a  ‘frame’.  Or,  it  can  be
unmapped.  This  way  one  can  create  virtual  memory
spaces.

Both  of  these  methods  have  their  advantages,  but
paging  is  much  better.  Segmentation  is,  although  still
usable,  fast  becoming obsolete as a  method of  memory
protection  and  virtual  memory.  In  fact,  the  x86-64
architecture requires a flat memory model (one segment
with a base of 0 and a limit of 0xFFFFFFFF) for some of
it’s instructions to operate properly.
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Segmentation is, however, completely in-built into the
x86 architecture. Every memory access which a program
can  perform  always  goes  through  a  segment.  It’s
impossible to get  around it,  therefore  we need  to  setup
Global Descriptor Table - a list of segment descriptors.

While GRUB does setup GDT for us we don’t know
where  it  is  nor  what  is  in  it.  In  the  x86,  there  are  6
segmentation registers. Each holds an offset into the GDT.
They are cs (code segment), ds (data segment), es (extra
segment),  fs,  gs,  ss  (stack  segment).  The code segment
must  reference  a  descriptor  which  is  set  as  a  ‘code
segment’. There is a flag for this in the access byte. The
rest should all reference a descriptor which is set as a ‘data
segment’.

To set up GDT we need to create GDT entry structure
and  a  special  pointer  structure  which  we  give  to  the
processor so it can find the GDT.

c) Interrupts
In system programming, an interrupt is a signal to the

processor emitted by hardware or software indicating an
event that needs immediate attention. An interrupt alerts
the  processor  to  a  high-priority  condition  requiring  the
interruption of the current code the processor is executing.
The  processor  responds  by  suspending  its  current
activities, saving its state, and executing a function called
an interrupt handler (or an interrupt service routine, ISR)
to deal with the event. This interruption is temporary, and,
after the interrupt handler finishes, the processor resumes
normal activities.

There are 3 types of interrupts:

• Hardware interrupts: are sent to 
the processor from an external 
device (keyboard, mouse, hard 
disk, ...). Hardware interrupts were
introduced as a way to reduce 
wasting the processor’s valuable 
time in polling loops, waiting for 
external events. 

• Software interrupts: are initiated 
voluntarily by the software. It’s 
used to manage system calls. 

• Exceptions: are used for errors or 
events occurring during program 
execution that are exceptional 
enough that they cannot be 
handled within the program itself 
(division by zero, page fault, ...) 

The  PIC  (Programmable  interrupt  controller)is  a
device that is used to combine several sources of interrupt
onto one or more CPU lines, while allowing priority levels
to be assigned to its interrupt outputs. When the device
has multiple interrupt outputs to assert, it asserts them in
the order of their relative priority.

The  Interrupt  Descriptor  Table  tells  the  processor
where to find handlers for each interrupt. It is very similar
to  the  GDT.  It  is  just  an  array  of  entries,  each  one
corresponding  to  an  interrupt  number.  There  are  256

possible interrupt numbers, so 256 must be defined. If an
interrupt occurs and there is no entry for it (even a NULL
entry  is  fine),  the  processor  will  panic  and  reset.  The
processor  will  sometimes  needs  to  signal  the  kernel.
Something major may have happened, such as a divide-
by-zero, or a page fault.  To do this, it  uses the first 32
interrupts. It is therefore doubly important that all of these
are mapped and non-NULL - else the CPU will triple-fault
and reset.

Like  the  GDT, the  IDT is  loaded  using  the  LIDTL
assembly  instruction.  It  expects  the  location  of  a  IDT
description structure (pointer).

We define our IDT table and then load it using LIDTL.
The  IDT  table  can  be  stored  wherever  we  want  in
memory, its address should just be signaled to the process
using the IDTR registry. After intialization of our IDT, we
can activate interrupts by configuring the PIC.

d) PS/2 Keyboard
The PS/2 Keyboard is a  device that  talks to a PS/2

controller  using  serial  communication.  Ideally,  each
different  type  of  PS/2  controller  driver  should  provide
some  sort  of  standard/simple  “send  byte/receive  byte”
interface,  and the PS/2 Keyboard  driver  would use this
interface  without  caring  about  lower  level  details  (like
what type of PS/2 controller the device is plugged into).

The  PS/2  Keyboard  accepts  commands  and  sends
responses to those commands, and also sends scan codes
indicating  when  a  key  was  pressed  or  released.  A
command is one byte. Some commands have data byte/s
which must be sent after the command byte. The keyboard
typically  responds  to  a  command  by  sending  either  an
“ACK” (to acknowledge the command) or a “Resend” (to
say something was wrong with the previous command)
back.

C. Memory management

Virtual memory is an abstraction of physical memory.
The purpose of virtual  memory is generally  to simplify
application development and to let processes address more
memory than  what  is  actually  physically  present  in  the
machine. We also don’t want applications messing with
the kernel or other applications’ memory due to security.

In  the  x86  architecture,  virtual  memory  can  be
accomplished  in  two  ways:  segmentation  and  paging.
Paging is by far the most common and versatile technique,
and  we’ll  implement  it  the  next  chapter.  Some  use  of
segmentation is still necessary to allow for code to execute
under different privilege levels.

a) Segmentation
Segmentation  in  x86  means  accessing  the  memory
through segments. Segments are portions of the address
space, possibly overlapping, specified by a base address
and a limit. To address a byte in segmented memory you
use  a  48-bit  logical  address:  16  bits  that  specifies  the
segment and 32-bits that specifies what offset within that
segment you want. The offset is added to the base address
of the segment, and the resulting linear address is checked
against the segment’s limit. If everything works out fine



the result  is  a  linear  address.  When paging is  disabled,
then  the  linear  address  space  is  mapped  1:1  onto  the
physical address space, and the physical memory can be
accessed. We enable segmentation via GDT.

b) Paging
Segmentation translates a logical address into a linear

address. Paging translates these linear addresses onto the
physical address space, and determines access rights and
how the memory should be cached.

Paging in x86 consists of a page directory (PDT) that
can contain references to 1024 page tables (PT), each of
which  can  point  to  1024  sections  of  physical  memory
called page frames (PF). Each page frame is 4096 byte
large.  In  a  virtual  (linear)  address,  the  highest  10  bits
specifies the offset of a page directory entry (PDE) in the
current PDT, the next 10 bits the offset  of a page table
entry (PTE) within the page table pointed to by that PDE.
The lowest 12 bits in the address is the offset within the
page frame to be addressed.

All page directories, page tables and page frames need
to  be  aligned  on  4096  byte  addresses.  This  makes  it
possible to address a PDT, PT or PF with just the highest
20 bits of a 32 bit address, since the lowest 12 need to be
zero.

The PDE and PTE structure  is  very similar  to each
other: 32 bits (4 bytes), where the highest 20 bits points to
a PTE or PF, and the lowest 12 bits control access rights
and other configurations. 4 bytes times 1024 equals 4096
bytes, so a page directory and page table both fit in a page
frame themselves.

The simplest  kind  of  paging is  when  we map each
virtual  address  onto  the  same  physical  address,  called
identity  paging.  This  can  be  done  at  compile  time  by
creating a page directory where each entry points to its
corresponding 4 MB frame.

c) Page Frame Allocation
Role  of  page  frame  allocator  is  simply  to  tell  the  OS
which parts of memory are free to use. We need to know
how much memory is available on the computer the OS is
running on. We can read it from the multiboot structure
passed to us by GRUB. GRUB collects the information
we  need  about  the  memory  -  what  is  reserved,  I/O
mapped, read-only etc.

D. Processes

Creating  new  processes  is  usually  done  with  two
different system calls: fork and exec. fork creates an exact
copy of the currently running process, while exec replaces
the current process with one that is specified by a path to
the location of a program in the file system.

1) System calls
System  calls  is  the  way  user-mode  applications

interact  with  the  kernel  -  to  ask  for  resources,  request
operations to be performed, etc.

System calls  are  traditionally  invoked with software
interrupts. The user applications put the appropriate values

in registers or on the stack and then initiates a pre-defined
interrupt which transfers execution to the kernel.

When system calls are executed, the current privilege
level  is  typically  changed  from  PL3  to  PL0  (if  the
application is running in user  mode).  To allow this, the
DPL of the entry in the IDT for the system call interrupt
needs to allow PL3 access.

To enable system calls we need to setup a TSS before
entering user mode.

E. File system

The purpose of  file  system is to organize  and store
data.  File system typically supports sharing data among
users and applications,  as well as persistence so data is
still available after reboot.

The  communication  between  computer  and  optical
drive  can  be  done  by  various  types  of  controllers  and
cabling such as ATAPI, SATA, or USB. Many operating
systems offer some kind of generic SCSI driver interface
which  abstracts  the  various  transports  to  a  single
transaction  API.  These  APIs  are  also  available  in
userspace.

KaT  OS  implements  ISO  9660  file  system  and
ATA/ATAPI drivers.

a) PCI IDE Controller
IDE  is  a  keyword  which  refers  to  the  electrical

specification of the cables which connect ATA drives (like
hard drives) to another device.  The drives use the ATA
(Advanced  Technology  Attachment)  interface.  An  IDE
cable also can terminate at an IDE card connected to PCI.

Parallel ATA (PATA), originally AT Attachment, is an
interface standard for  the connection of storage devices
such as hard disk drives, floppy disk drives, and optical
disc  drives  in  computers.  It  uses  the  underlying  AT
Attachment  (ATA)  and  AT Attachment  Packet  Interface
(ATAPI) standards.

ATAPI is an extension to ATA (recently renamed to
PATA) and Serial ATA, which adds support for the SCSI
command set. With ATAPI a greater variety of devices can
be connected to a computer than with ATA alone.

ATAPI devices are also “speaking ATA” because the
ATA physical interface and protocol are still being used to
send the packets. On the other hand, ATA hard drives and
solid state drives do not use ATAPI. ATAPI is basically a
way to issue SCSI commands to  a  CD-ROM, CD-RW,
DVD, or tape drive, attached to the ATA bus.

KaT OS running some kernel built-in commands



ATAPI uses a very small number of ATA commands.
The most important are the PACKET command (0xA0),
and IDENTIFY PACKET DEVICE (0xA1).

An IDE driver does not need to know whether a drive
is parallel or serial, it only has to know whether it’s using
ATA or  ATAPI.  IDE can  connect  up to  4  drives.  Each
drive can be one of the following:

• ATA  (Serial):  Used  for  most
modern hard drives. 

• ATA  (Parallel):  Commonly  used
for hard drives. 

• ATAPI  (Serial):  Used  for  most
modern optical drives. 

• ATAPI (Parallel): Commonly used
for optical drives. 

b) ISO 9660
ISO 9660 is the standard file system for CD-ROMs. It

is also widely used on DVD and BD media and may as
well  be  present  on  USB  sticks  or  hard  disks.  Its
specifications  are  available  for  free  under  the  name
ECMA-119.

An ISO 9660 sector is normally 2 KiB long. Although
the specification allows for  alternative sector  sizes,  you
will rarely find anything other than 2 KiB. ISO 9660 file
systems can have up to 2 exp 32 blocks, i.e. 8 TiB.

The following is the rough overall structure of the ISO
9660 file system:

ISO 9660 File System

System Area Unused by ISO 9660

Data Area Volume Descriptor Set
Path tables, Directories and Files

   The ISO 9660 standard specifies three ways to encode
16  and  32-bit  integers,  using  either  little-endian  (least-
significant  byte  first),  big-endian  (most-significant  byte
first), or a combination of both (little-endian followed by
big-endian). Both-endian (LSB-MSB) fields are therefore
twice as wide. For this reason, 32-bit LBA’s often appear
as 8 byte fields. Where a both-endian format is present,
the x86 architecture  makes  use of  the first  little-endian
sequence and ignores the big-endian sequence.

c) The virtual file system
A VFS is intended to abstract away details of the file

system  and  location  that  files  are  stored,  and  to  give
access  to  them in  a  uniform manner.  They are  usually
implemented as a graph of nodes; Each node representing
either  a  file,  directory, symbolic  link,  device,  socket  or
pipe. Each node should know what file system it belongs
to  and  have  enough  information  such  that  the  relevant
open/close/etc  functions  in  its  driver  can  be  found  and
executed. A common way to accomplish this is to have the

node store function pointers which can be called by the
kernel. We need a few function pointers:

• Open - Called when a node is 
opened as a file descriptor. 

• Close - Called when the node is 
closed. 

• Read & Write 
• Readdir 
• Finddir 

Mountpoints are the UNIX way of accessing different
file systems. A filesystem is mounted on a directory - any
subsequent access to that directory will actually access the
root  directory  of  the new filesystem. So essentially  the
directory is told that it is a mountpoint and given a pointer
to the root node of the new filesystem.

III. CONCLUSION

From  the  start  we  were  aware  how  complex
developing  operating  system  is,  however  in  reality  it
proved to be even harder  than thought. Individual parts
may appear simple enough to grasp in few days or even
hours,  however their  implementation and cooperation is
very complex. There are also many caveats  as result of
different  manufacturers   maintaining  backwards
compatibility. 
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